Effective Visualization of Information Diffusion Process over Complex Networks
نویسندگان
چکیده
Effective visualization is vital for understanding a complex network, in particular its dynamical aspect such as information diffusion process. Existing node embedding methods are all based solely on the network topology and sometimes produce counter-intuitive visualization. A new node embedding method based on conditional probability is proposed that explicitly addresses diffusion process using either the IC or LT models as a cross-entropy minimization problem, together with two label assignment strategies that can be simultaneously adopted. Numerical experiments were performed on two large real networks, one represented by a directed graph and the other by an undirected graph. The results clearly demonstrate the advantage of the proposed methods over conventional spring model and topology-based cross-entropy methods, especially for the case of directed networks.
منابع مشابه
دیداری کردن نتایج جستوجو در فرایند بازیابی اطلاعات
Purpose: One of the most effective ways to achieve optimum information retrieval is through visualization of Information. Search strategies, probing skills, querying of information needs and analysis of information play a significant role in the accessing of necessary and useful information. Besides the factors mentioned above, information visualization can increase the availability level of in...
متن کاملBalanced clusters and diffusion process in signed networks
In this paper we study the topology effects on diffusion process in signed networks. Considering a simple threshold model for diffusion process, it is extended to signed networks and some appropriate definitions are proposed. This model is a basic model that could be extended and applied in analyzing dynamics of many real phenomena such as opinion forming or innovation diffusion in social netwo...
متن کاملNetwork robustness and irreversibility of information diffusion in Complex networks
Complex networks are characterized based on a newly proposed parameter, “degree of diffusion ̨”. It defines the ratio of information adopters to non-adopters within a diffusion process over consecutive penetration depths. Furthermore, the perfectness of a social network is evaluated by exploring different variations of ̨ such as the reverse diffusion ( ̨reverse) and the random-kill-diffusion (RK...
متن کاملUsing Neural Networks with Limited Data to Estimate Manufacturing Cost
Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...
متن کاملA Novel Caching Strategy in Video-on-Demand (VoD) Peer-to-Peer (P2P) Networks Based on Complex Network Theory
The popularity of video-on-demand (VoD) streaming has grown dramatically over the World Wide Web. Most users in VoD P2P networks have to wait a long time in order to access their requesting videos. Therefore, reducing waiting time to access videos is the main challenge for VoD P2P networks. In this paper, we propose a novel algorithm for caching video based on peers' priority and video's popula...
متن کامل